
Micromega Corporation 1 Revised 2006-09-20

Application Note 32

uM-FPU V3 Long Integer
Calculations

This application note shows some examples of how to perform long integer calculations using the uM-FPU V3
floating point coprocessor. See Application Note 31 - uM-FPU V3 Floating Point Calculations for floating point
examples and the uM-FPU V3 Instruction Reference for a full description of all instructions.

The uM-FPU V3 IDE (Integrated Development Environment) software provides a code generator that automatically
produces uM-FPU V3 code from standard mathematical equations. It also generates code for various supported
microcontrollers. Using the uM-FPU V3 IDE is an excellent way of becoming familiar with uM-FPU V3 instruction
set, and is very useful for implementing your own equations and calculations. The uM-FPU IDE is available for
download on the Micromega website.

Brief Overview of uM-FPU V3 chip
For a full description of the uM-FPU V3 chip, please refer to the uM-FPU V3 Datasheet, uM-FPU V3 Instruction
Reference, and the reference documentation for each of the supported microcontrollers.

The uM-FPU V3 chip is a separate coprocessor with its own set of registers and instructions designed to provide
microcontrollers with 32-bit floating point and long integer capabilities. The microcontroller communicates with the
uM-FPU using a SPI or I2C interface. The microcontroller sends instructions and data to the uM-FPU, and the uM-
FPU performs the calculations. The microcontroller is free to do other tasks while the uM-FPU performs
calculations. Results can be read back to the microcontroller or stored on the uM-FPU for later use. The uM-FPU
V3 chip has 128 registers, numbered 0 through 127, that can hold 32-bit floating point or long integer values.
Register 0 is often used as a temporary register and is modified by some of the uM-FPU V3 instructions. Registers 1
through 127 are available for general use.

Arithmetic instructions use the value in register A as an operand and store the result of the operation in register A.
Register A can be regarded as an accumulator or working register. The SELECTA instruction is used to select any
one of the 128 registers as register A. If an instruction requires more than one operand, the additional operand is
specified by the instruction. For example,

uM-FPU Instruction Description
LSET, 5 register[A] = register[5]
LADD, 10 register[A] = register[A] + register[10]
LSUB, 64 register[A] = register[A] – register[64]
LMUL, 1 register[A] = register[A] * register[1]
LDIV, 16 register[A] = register[A] / register[16]

Each of the basic long integer arithmetic instructions are provided in three different forms as shown in the table
below. For example, LADD,nn allows any general purpose register to be added to register A. The nn byte following
the opcode specifies the register to be added. The LADD0 instruction only requires the opcode and adds register 0 to
register A. The LADDI instruction adds a small integer value to register A. The signed byte (-128 to 127) following

Micromega Corporation 2 AN32: uM-FPU V3 Long Integer Calculations

Micromega Corporation 3 AN32: uM-FPU V3 Long Integer Calculations

the opcode is converted to long integer and added to register A. The LADD,nn instruction is most general, but the
LADD0 and LADDI,bb instructions are more efficient for many common operations.

Register nn
LSET,nn
LADD,nn
LSUB,nn
LMUL,nn
LDIV,nn
LCMP,nn
LUDIV,nn
LUCMP,nn
LTST,nn

Register 0
LSET0
LADD0
LSUB0
LMUL0
LDIV0
LCMP0
LUDIV0
LUCMP0
LTST0

Immediate value
LSETI,bb
LADDI,bb
LSUBI,bb
LMULI,bb
LDIVI,bb
LCMPI,bb
LUDIV,bb
LUCMP,bb
LTST,bb

Description
Set
Add
Subtract
Multiply
Divide
Compare
Unsigned Divide
Unsigned Compare
Test Bits

The uM-FPU V3 instructions to add register 1 to register 2 is as follows:

SELECTA,2
LADD,1

To create more readable programs, names are generally assigned to the register values. This application note uses
equations with the variables m, n, and t, so we define three uM-FPU registers M, N and T to store these values. The
method of defining symbols varies depending on the microcontroller being used. See the sample programs for
specific examples. Pseudo-code is used for the following definitions:

define M as 1 ; m value uM-FPU register 1
define N as 2 ; n value uM-FPU register 2
define T as 3 ; t value uM-FPU register 3

Using names for the registers, the sequence of uM-FPU V3 instructions for n = m is:

SELECTA, N
LADD, M

The uM-FPU V3 instructions required for various examples are shown on the following pages. The interface
routines for sending the uM-FPU V3 code depends on the microcontroller being used. Please see the reference
guides for the various supported microcontrollers for more specific information.

Micromega Corporation 2 AN32: uM-FPU V3 Long Integer Calculations

Micromega Corporation 3 AN32: uM-FPU V3 Long Integer Calculations

Micromega Corporation 4 AN32: uM-FPU V3 Long Integer Calculations

Examples

The following examples show how to translate common mathematical equations into the uM-FPU V3 instructions
required to perform the calculation. A brief explanation of each example is provided. The uM-FPU V3 IDE software
can be used to automatically generate code for standard mathematical equations.

n = 0

The CLRA instruction can be used to set a register to 0.

SELECTA, N ; select N as register A
CLRA ; N = 0

n = -10.0

Immediate instructions can be used for small integer values.

SELECTA, N ; select N as register A
LSETI, -10 ; N = -10.0

n = n + 1

The LINC and LDEC instruction can be used to increment or decrement a register without affecting register A.

LINC, N ; increment register N

n = n - 1

LDEC, N ; increment register N

m = m + n

Performing an operation using two registers is very straightforward.

SELECTA, M ; select M as register A
LADD, N ; M = M + N

t = m / n

The LDIV instruction performs a signed division and the LUDIV instruction performs an unsigned division. The
result is stored in register A and the remainder is stored in register 0.

SELECTA, T ; select T as register A
LSET, M ; T = M
LDIV, N ; T = T / N, register[0] = remainder

 t = m mod n (remainder of m / n)

SELECTA, T ; select T as register A
LSET, M ; T = M

Micromega Corporation 3 AN32: uM-FPU V3 Long Integer Calculations

Micromega Corporation 4 AN32: uM-FPU V3 Long Integer Calculations

Micromega Corporation 5 AN32: uM-FPU V3 Long Integer Calculations

LDIV, N ; T = T / N, register[0] = remainder
LSET0 ; T = register[0]

n = 5m + 30

Constant values that are small integers can be easily handled using the immediate instructions. These instructions
load an integer value, convert it to long integer, and store the result in register 0.

SELECTA, N ; select N as A register
LSETI, 5 ; N = 5
LMUL, M ; N = N * M
LADD, 30 ; N = N + 30

n = 512

The LONGBYTE, LONGUBYTE, LONGWORD and LONGUWORD instructions can also be used to load constants. These
instructions load an integer value, converts it to long integer, and stores the result in register 0. The LONGWORD and
LONGUWORD instructions are used for 16-bit values and require two 8-bit bytes after the opcode.

SELECTA, N ; select N as register A
LONGWORD, 2, 0 ; register[0] = 512 (high byte, low byte)
LSET0 ; N = register[0]

m = n / 500000 (using ATOL instruction)

The ATOL instruction is used to convert a zero terminated string to a long integer value. (Note: make sure there is a
zero terminator on the string.)

SELECTA, M ; select M as register A
LSET, N ; M = N
ATOL, "500000", 0 ; load string, convert to long integer,

; and store in register 0
LDIV0 ; M = M / register[0]

m = n / 500000 (using LWRITE instruction)

The LWRITE instruction is a very efficient way of loading a long integer value to a uM-FPU register. It is often
easier to express a 32-bit long integer as a hexadecimal number since most microcontroller compilers only support
8-bit and 16-bit values. The automatic code generation provided by the uM-FPU V3 IDE is a convenient way to
generate long integer constants.

SELECTA, M ; select M as register A
LWRITE0, $00, $07, $A1, $20

; register[0] = 500000
LDIV0 ; M = M / register[0]

m = n2

To calculate the square of a value you can just multiply the number by itself.

SELECTA, M ; select M as register A
LSET, N ; M = N
LMUL, N ; M = M * N

Micromega Corporation 4 AN32: uM-FPU V3 Long Integer Calculations

Micromega Corporation 5 AN32: uM-FPU V3 Long Integer Calculations

Micromega Corporation 6 AN32: uM-FPU V3 Long Integer Calculations

n = m / n

In the previous examples, we’ve been able to use the variable on the left side of the equation to hold the partial
results as each step of the equation is calculated. In the example above, this is not possible because the value on the
left is used in the equation and can’t be modified until after it is used. Fortunately, the uM-FPU provides temporary
registers through the use of parentheses. The original equation can be rewritten as n = (m / n), and the calculation
inside the parentheses uses a temporary register. Here’s how it works. When a LEFT parenthesis instruction is sent,
the current selection for register A is saved, and a temporary register is set to register A. Operations can now be
performed as normal, with the temporary register selected as register A. When a RIGHT parenthesis instruction is
sent, the current value of register A is copied to register 0, and the previous selection for register A is restored.
Although it sounds complicated, the sequence of instructions is quite straightforward, a LEFT and RIGHT
parenthesis simply enclose the temporary value calculations.

SELECTA, N ; select N as register A
LEFT ; select temp1 as register A
LSET, M ; temp1 = M
LDIV, N ; temp1 = temp1 / N
RIGHT ; register[0] = temp1, and

; restore N as register A
LSET0 ; M = register[0]

t = (m + n) / 10

The uM-FPU executes instructions in the order in which they occur. In this example, the parentheses are not
necessary. The addition is done first, followed by the divide.

SELECTA, T ; select T as register A
LSET, M ; T = M
LADD, N ; T = T + N
LDIVI, 10 ; T = T / 10

t = m / (n + t)

In the following example, t is used on the right of the equation so a temporary value is required. The equation can be
rewritten as t = (m / (n + t)). The uM-FPU supports up to eight levels of nested parentheses.

SELECTA, T ; select T as register A
LEFT ; select temp1 as register A
LSET, M ; temp = M
LEFT ; select temp2 as register A
LSET, N ; temp2 = N
LADD, T ; temp2 = temp2 + T
RIGHT ; register[0] = temp2, and

; restore temp1 as register A
LDIV0 ; temp1 = temp1 / temp2
RIGHT ; register[0] = temp1, and

; restore T as register A
LSET ; T = temp1

Micromega Corporation 5 AN32: uM-FPU V3 Long Integer Calculations

Micromega Corporation 6 AN32: uM-FPU V3 Long Integer Calculations

Micromega Corporation 7 AN32: uM-FPU V3 Long Integer Calculations

Extract the value of a range of bits from a long integer
m = bits 20-23 of n (right justified)

The LSHIFT instruction shifts the value in register A by the number of bits specified in the value in another register.
If the value is positive, a left shift occurs, if the value is negative, a right shift occurs. The LAND instruction
calculates the logical AND of register A and the specified register.

SELECTA, M ; select M as register A
LSET, N ; M = N
LONGBYTE, -20 ; register[0] = -20
LSHIFT, 0 ; shift M left by 20 bits
LONGBYTE, $0F ; register[0] = $0F
LAND, 0 ; M = lower four bits of M

Extract time values from a long integer time count

A counter is often used to keep track of time by counting the number of ticks of a clock. In this example we assume
that the clock ticks once per second. A long integer is used to keep track of the number of seconds, which can store
232 – 1, or 4,294,967,295 seconds. This provides for an elapsed time of over 136 years. The following example
shows how the number of days, hours, minutes and seconds can be extracted from the time count (T) by using a
series of divisions and remainders. The first step is to find the number of days by dividing the time value by 86,400
(the number of seconds in a day). The remainder is then divided by 3600 to get the number of hours. This remainder
is divided by 60 to get the number of minutes, and the last remainder is the number of seconds. The LUDIV
unsigned divide instruction is used since the elapsed time is unsigned.

define Days as 4 ; days uM-FPU register 4
define Hours as 5 ; hours uM-FPU register 5
define Minutes as 6 ; minutes uM-FPU register 6
define Seconds as 7 ; seconds uM-FPU register 7

SELECTA, Days ; select Days as register A
LSET, T ; Days = T
LWRITE0, $00, $01, $51, $80 ; load 86400 to register 0
LUDIV0 ; Days = Days / 86400

SELECTA, Hours ; select Hours as register A
LSET0 ; Hours = remainder of Days / 86400
LONGWORD, $0E, $10 ; load 3600 to register 0
LDIV0 ; Hours = Hours / 3600

SELECTA, Minutes ; select Minutes as A register
LSET0 ; Minutes = remainder of Hours / 3600
LONGBYTE, 60 ; load 60 to register 0
LDIV0 ; Minutes = Minutes / 60

SELECTA, Seconds ; select Seconds as A register
LSET0 ; Seconds = remainder of Minutes / 60

Micromega Corporation 6 AN32: uM-FPU V3 Long Integer Calculations

Micromega Corporation 7 AN32: uM-FPU V3 Long Integer Calculations

Read 100 unsigned 16-bit samples from a sensor, and calculate the average.

The method of implementing the loop and reading the sensor will vary depending on the microcontroller sensor
used. See the sample programs for specific examples. Pseudo-code is shown below. In this example, N is used to
accumulate the sum of 100 16-bit sensor readings. The sum is then divided by 100 to calculate the average value.

SELECTA, N ; select N as register A
CLR0 ; register[0] = 0

loop for i = 1 to 100
{

read sensor value and store in svalue
LONGBYTE, ; register[0] = signed 16-bit value
svalue ; (high byte)
svalue ; (low byte)
LADD0 ; N = N + svalue

}
LDIVI, 100 ; N = N / 100

Further Information
Check the Micromega website at www.micromegacorp.com for up-to-date information.

